Interesting work. Some thoughts:
First, your business model isn't really clear, as what you've described so far sounds more like a research project than a go-to-market premise. Computational pathology is a crowded market, and the main players all have two things in common: access to huge numbers of labeled whole-slide images, and workflows designed to handle such images. Without the former, your project sounds like a non-starter, and given the latter, the idea you've pitched doesn't seem like an advantage. Notably, some of the existing models even have open weights (e.g. Prov-GigaPath, CTransPath).
Second, you've talked about using this approach to make diagnoses, but it's not clear exactly how this would be pitched as a market solution. The range of possible diagnoses is almost unlimited, so a useful model would need training data for everything (not possible). My understanding is that foundation models solve this problem by focusing on one or a few diagnoses in a restricted scope, e.g. prostate cancer in prostate core biopsies. The other approach is to screen for normal in clearly-defined settings, e.g. Pap smears, so that anything that isn't "normal" is flagged for manual review. Either approach, as you can see, demands a very different training and market positioning strategy.
Finally, do you have pathologists advising you, and have you done any sort of market analysis? Unless you're already a pathologist (and probably even if you were), I suspect that having both would be of immense value in deciding a go-forward plan.
All the best!
Hi, thanks for the comment! Just wanted to respond to some of comments here:
>> First, your business model isn't really clear, as what you've described so far sounds more like a research project than a go-to-market premise.
This is not really a core component of our business but more so was just something cool that I built and wanted to share!
>> Computational pathology is a crowded market, and the main players all have two things in common: access to huge numbers of labeled whole-slide images, and workflows designed to handle such images. Without the former, your project sounds like a non-starter, and given the latter, the idea you've pitched doesn't seem like an advantage. Notably, some of the existing models even have open weights (e.g. Prov-GigaPath, CTransPath).
We have partnerships with a few labs to get access to a large amount of WSIs, both H&E and IHC, but our core business really isn't building workflow tools for pathologists at the moment.
>> Second, you've talked about using this approach to make diagnoses, but it's not clear exactly how this would be pitched as a market solution. The range of possible diagnoses is almost unlimited, so a useful model would need training data for everything (not possible). My understanding is that foundation models solve this problem by focusing on one or a few diagnoses in a restricted scope, e.g. prostate cancer in prostate core biopsies.
I agree with you in that I don’t necessarily think this is really a market solution at the current state (it isn't even close to accurate enough), but I think that the beauty of this solution is the general-purpose nature of it in that it can work not only across tissue types, but also different pathology tasks like IHC scoring along with cancer sub typing. The value of foundation models is in the fact that tasks can generalize. For example, part of what made this super interesting to me was the fact that the general purpose foundation models like GPT 5 are able to even perform this super niche task! Obviously there are path-specific foundation models too that have their own ViT backbones, but it is pretty incredible that GPT 5 and Claude 4.5 can perform at this level already.
Yes to the best of my knowledge, most FDA-approved solutions are point solutions, but I am not yet convinced this is the best way to deploy solutions in the long-term. For example, there will always be rare diseases where there isn't enough of a market for there to be a specialized solution for and in those cases, general-purpose models that can generalize to some degree may be crucial.